Yoel Fink stands under an unassuming LED ceiling lamp wearing what appears to be just an ordinary baseball cap. “Do you hear it?” he asks. Semiconductor technology within the fibers of the hat is converting the audio encoded in light pulses to electrical pulses, he explains, and those pulses are then converted to sound. “This is one of the first examples of an advanced fabric. It looks like an ordinary hat but it’s really a sophisticated optical communication system.”

Fink and his team are shaping a new destiny for fabrics. Clothing as a communications system: A hat that picks up light transmissions and converts them to sound can hold life-saving potential. “Think about pedestrian safety and self-driving cars. Tremendous investments are going into cars. How about the pedestrians? Do we as pedestrians or bikers get to know if the car has detected us?” Fink asks. “With fabric optical communications your baseball cap can not only alert a car to your presence but importantly let you know if the car detected you. Fabrics for the self-driving future.”

This is just one example, Fink says, of how the next generation of fabrics could change how we think about all of them. An MIT professor of materials science and electrical engineering and CEO of Advanced Functional Fabrics of America (AFFOA), a $300 million institute on the edge of campus, Fink is eager to share his enthusiasm for fabrics with the MIT community. “While all of this originated in basic science and engineering, we are focusing our efforts on transition to manufacturing and product,” he says. “We would not be here today if not for MIT’s focus on the importance of transitioning technology to the marketplace.” Read More